Identifying Relations for Open Information Extraction

نویسندگان

  • Anthony Fader
  • Stephen Soderland
  • Oren Etzioni
چکیده

Open Information Extraction (IE) is the task of extracting assertions from massive corpora without requiring a pre-specified vocabulary. This paper shows that the output of state-ofthe-art Open IE systems is rife with uninformative and incoherent extractions. To overcome these problems, we introduce two simple syntactic and lexical constraints on binary relations expressed by verbs. We implemented the constraints in the REVERB Open IE system, which more than doubles the area under the precision-recall curve relative to previous extractors such as TEXTRUNNER and WOE. More than 30% of REVERB’s extractions are at precision 0.8 or higher— compared to virtually none for earlier systems. The paper concludes with a detailed analysis of REVERB’s errors, suggesting directions for future work.1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model

Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...

متن کامل

Open Language Learning for Information Extraction

Open Information Extraction (IE) systems extract relational tuples from text, without requiring a pre-specified vocabulary, by identifying relation phrases and associated arguments in arbitrary sentences. However, stateof-the-art Open IE systems such as REVERB and WOE share two important weaknesses – (1) they extract only relations that are mediated by verbs, and (2) they ignore context, thus e...

متن کامل

Open Information Extraction

Open Information Extraction (Open IE) systems aim to obtain relation tuples with highly scalable extraction in portable across domain by identifying a variety of relation phrases and their arguments in arbitrary sentences. The first generation of Open IE learns linear chain models based on unlexicalized features such as Part-of-Speech (POS) or shallow tags to label the intermediate words betwee...

متن کامل

Open Information Extraction for SOV Language Based on Entity-Predicate Pair Detection

Open IE usually has been studied for English which of one of subject-verb-object(SVO) languages where a relation between two entities tends to occur in order of entity-relational phrase-entity within a sentence. However, in SOV languages, two entities occur before the relational phrase so that the subject and the relation have a long distance. The conventional methods for Open IE mostly dealing...

متن کامل

MinIE: Minimizing Facts in Open Information Extraction

The goal of Open Information Extraction (OIE) is to extract surface relations and their arguments from naturallanguage text in an unsupervised, domainindependent manner. In this paper, we propose MinIE, an OIE system that aims to provide useful, compact extractions with high precision and recall. MinIE approaches these goals by (1) representing information about polarity, modality, attribution,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011